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ABSTRACT: For multicomponent vesicles, the line tension of domain
boundaries and the component-dependent elastic properties (e.g., sponta-
neous curvatures) are the two most important factors that mediate the
budding behaviors of these vesicles. This paper especially focuses on their
effects on the budding types and the budding number of a two-component
vesicle. We found that the budding number is mainly determined by the
component-dependent elastic properties while the budding types mediated
by line tensions. A phase diagram is also obtained showing three different
types of phase regions: (i) partially budding, (ii) partially bud-off, and (iii) totally bud-off regions. These inspiring results are,
however, derived from a very simple spherical-cap model, and have been tested by computer simulations showing good
agreement. We emphasize that, besides testing the spherical-cap model, the computer simulation techniques developed in the
current work can be easily extended to other systems involving multicomponent vesicles.

■ INTRODUCTION

Multicomponent membranes1 consist of more than one species
of lipid molecules. In the last two decades, such membranes
have been extensively studied both experimentally2−5 and
theoretically6−19 due to the following two reasons. First,
biomembranes are multicomponent membranes.20 Second,
multicomponent vesicles exhibit some amazing physical
properties that have not been observed for single-component
vesicles.21,22 In particular, such a vesicle can form intra-
membrane domains and undergo domain-induced budding,
usually with many buds including partially budding buds as well
as some bud-off buds.
In theory, the budding behaviors of two-component vesicles

or membranes have been previously studied from both
dynamical7,9−13 and equilibrium6,8,14−18 perspectives. For
budding dynamics,7,9−13 various simulation techniques have
been developed to obtain the scaling laws of kinetics. Vesicles
with many buds have also been observed in these simulations.
For instance, Kohyama et al.10 have employed a dynamic
triangulation model combining with a Monte Carlo simulation
to study the role of line tension and spontaneous curvature for
the budding of crystalline domains in fluid vesicles. However,
dynamical simulations alone cannot determine whether a many-
bud state is a stable state or just a trapped, metastable state,
since in a flat two-dimensional system two immiscible
components will finally separate into two macrodomains.
Therefore, in recent years, the equilibrium properties of

multicomponent vesicles have begun to regain the interest of
theorists.14−18 In the early days, equilibrium properties of such
vesicles were analytically studied for two special cases, 1-D
membranes15 (embedded in a 2D plane) and membranes with
rotational symmetry.14,15 Recently, several interesting
works16−18 have been devoted to understanding the influence
of the component-dependent elastic properties on the budding
behavior of multicomponent vesicles. In particular, Gutlederer

et al.16 and Hu et al.18 extensively studied the partially budding
behavior of a multicomponent vesicle under various conditions
and obtained fruitful and inspiring results. By comparing the
energies of different metastable states, they found that a many-
bud state aforementioned can be stable within a wide range of
parameter settings. On the other hand, partially budding buds,
bud-off buds, and other morphologies (or budding types) have
been studied using a coarse grained model together with a
continuum-model analysis by Zheng et al.17 and they observed
many interesting vesicle shapes like biconcave, starfish, and
capsules. Those works basically arrive at the same conclusion
that the line tension of domain boundaries is the main driving
force for budding,14 while the component-property difference
will further complicate the final budding configurations.15−18

However, the relationship between the component-dependent
properties and the budding behavior still remains somehow
elusive. In particular, we are still not clear about how the
component-dependent properties determine the number of
buds especially for vesicles with no symmetries imposed. The
reasons for this are largely because former axisymmetrical
assumptions14,15 are not applicable here and, at the same time,
the above simulations16−18 still have difficulties in finding all
stable states of different budding types for such vesicles.
In contrast, Lipowsky6 suggested a very simple spherical-cap

model to study the budding behavior of two-component planar
membranes. The spherical-cap model is simple but found to be
effective in addressing the basic physics regarding the involved
budding process. Therefore, in this article, we shall study the
equilibrium properties of a two-component vesicle using the
same simple model but for closed vesicles, focusing on the
influences of domain line tension and component-dependent
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elastic properties. Different components may have different
elastic properties such as bending rigidities, Gaussian moduli,
and spontaneous curvatures. Here, we only consider the effects
of the spontaneous curvature difference, leaving other
possibilities to the future publications. This simple spherical-
cap model enables us to calculate the global minimum-energy
states very easily and accurately. By this model, a phase diagram
is constructed and exhibits three different types of phase
regions: (i) partially budding, (ii) partially bud-off, and (iii)
totally bud-off regions. The (i) phase regions have been studied
by refs 15, 16, and 18, while (ii) phase regions have been
especially discussed in ref 17. (iii) phase regions are new, and
the knowledge of these regions is valuable, since many
biological phenomena involve bud-off processes.20 However,
this model (though with no axisymmetrical assumption) is still
oversimplified and needs to be tested. Therefore, a computer
simulation based on a dynamical-triangulation method23 and
dissipative dynamics7 will be further developed to support the
above findings.

■ METHODOLOGIES

A Spherical-Cap Model for Multi-Component Vesicles.
In the spherical-cap model6 for two-component vesicles, we
assume that the two membrane lipids A and B have already
separated into the pure A and pure B domains. A and B
membrane patches share the same bending rigidity, κ, and are
both with vanishing Gaussian bending energy, while their
preferred curvatures or spontaneous curvatures, CA and CB, may
differ from each other. In most cases, it is reasonable to assume
that the dominant component B has zero spontaneous
curvature and the left component tends to bud out, i.e., CB =
0 and CA > 0.16,17 As illustrated in Figure 1, the final
morphology of the two-component vesicle is assumed to be
with np spherical caps (partially budding buds) and nt spheres
(bud-off buds) both composed of pure A components; and np
spherical caps are adjacent to the original, B-component sphere
with np holes in it. By the above setting, the energy of such a
vesicle can be expressed in terms of
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where f i(k),A(B) are bending energy densities κ(2/Ri(k) − CA(B))
2/

2 with Ri, Rk, amd Rs being the radii of bud-off spheres, budding
caps, and B-component sphere, respectively. γ is the line
tension of the A/B domain boundaries. For the present model,
we did not include osmotic pressure and the vesicle volume is,
therefore, freely adapting; this assumption has also been
employed in several previous theoretical works7,9,17 involving
multicomponent vesicles. However, the total membrane area,
4πR0

2, is fixed using the following constraints: [4πRs
2 −

∑1
np πRk

2 sin2 θk] = 4πR0
2(1 − ϕ̅A) and∑1

nt 4πRi
2 +∑1

np 2πRk
2(1

+ cos θk] = 4πR0
2ϕ̅A, where ϕ̅A is the overall volume fraction of

the A component. Because near the critical composition the A
component usually forms belt-like domains for small CA, which
obviously cannot be described by the spherical-cap model, we
only study the off-critical case and set ϕ̅A = 0.35 throughout this
work.

Apparently, the final vesicle configuration of the spherical-cap
model described above is determined by the two controlled
parameters: the reduced line tension R0γ/κ and the reduced
spontaneous curvature R0CA. The equilibrium stable config-
uration for a fixed (R0γ/κ, CAR0) can be obtained via the
optimizations of eq 1 with respect to the numbers, sizes, and
budding angles of buds, i.e., nt, np, Ri, Rk, Rs, and θk. To ensure
what we obtain is really the global minimum, we enumerate
nearly all possible values of these parameters with the only one
constraint that nt + np ≤ 7 and compare the corresponding
energies obtained from eq 1 to determine the global minimum
state.

Simulation Method for Multi-Component Vesicles.
The spherical-cap model described above will be checked by a
dissipative dynamical simulation in the Results section. The
simulation method closely follows Taniguchi’s work,7 where he
used a deformable but a network topology fixed triangulation
together with a diffusive dynamics to describe the deformation
of a two-component vesicle. In the present work, to further
account for the large deformation of the vesicle, we have
incorporated into the current method the dynamical triangu-
lation techniques.9,10,23 In a recent work,24 we have successfully
applied these techniques to simulate the large deformations of
the gold nanostructures observed in the experiments.
To describe the diffusive dynamics, the order parameter of

components ϕ = ϕA − ϕB is introduced. In terms of this
parameter, the free energy of the A/B vesicle can be expressed
as F = F1 + F2

∫κ ϕ λ= − +F H C A S
2

( ) d1 A A
2

(2)

Figure 1. Schematic illustration of the spherical-cap model (SCM) for
two-component vesicles. The “np + nt” notations (e.g., “2 + 1”) are
used to denote the final vesicle configuration, with np and nt being the
number of the partially budding and bud-off buds, respectively (see
also Figure 2). A-component domains are denoted by dotted arcs
while B-component with solid ones.
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where F1 is the shape energy with H/2 being the mean
curvature and λ the Lagrange multiplier to constrain the total
area of the vesicle. F2 is the Ginzburg−Landau free energy
where √b is a correlation length and a2 and a4 are two
phenomenological parameters. These three parameters are all
set to 1 and closely related to the domain line tension by the
relation γ ≈ 2(2ba2)

1/2/3.25 In the Results section, we study the
effect of the reduced line tension γR0/κ by tuning the bending
modulus κ (see Figure 5) other than by varying the
phenomenological parameters. With the above energetic
expressions (eqs 2 and 3), the budding process of two-
component vesicles can be properly described by the dissipative
dynamics7
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where r represents the vesicle shape and Lr and Lϕ are two
kinetic coefficients, which are set to 1/8 and 1, respectively.
The integration of these two kinetic equations was performed
using the Euler scheme, where Δt is set to 0.001. The radius of
the initial vesicle is R0 = 12 with 2562 vertices in the
triangulation mesh. It should be noted that, in order to be
compatible with the dynamical triangulation, we only constrain
the total area other than the local area. In addition, the thermal
fluctuations are not included in the current study.
In Taniguchi’s work,7 the above dynamical equations are

employed to study the dynamical behaviors of the vesicle
deformation coupling with the phase separations. In the current
work, we shall focus on the equilibrium behavior and these
equations are used to minimize the system energy instead: if
the dynamics is evolved for a sufficiently long time, the
obtained vesicle shape should correspond to a local minimum
state (see the Results section).
Herein, we especially discuss the dynamical triangulation

method, which is an important technique for simulating large
deformations of membranes based on the traditional
continuum membrane theory. The dynamical triangulation
method of the current study is mostly based on a free software
Surface Evolver,23 but we have made important improvements
about this method and the corresponding simulation codes are
entirely composed by ourselves. Specifically, the improved
method consists of several surface operations:
(i) Equiangulation. The basic idea of this surface operation is

to eliminate the obtuse triangles by flipping edges (or bonds).
A detailed description of this operation can be read in ref 23.
(ii) Vertex Averaging. As the dynamical process continues,

the triangulated mesh may become not evenly woven or, in
other words, the vertexes are not evenly distributed on the
surface anymore. This uneven mesh will severely impair the
numerical stability of the simulation. For the compensation, we
redistribute the vertexes. The mesh is first refined and
interpolated twice using the butterfly scheme,26 and the
number of the vertex will be increased by 16 times during
this refinement. The A/B concentrations will also be
interpolated and refined. Then, we “vertex-average” the original
vertexes according to a method similar to that of ref 23 while

we constrain the after-averaged positions on the refined mesh.
The advantage of this promoted technique is that the repeating
of the operation would not alter the shape of the membrane,
while the vertex-averaging operation presented in ref 23 will
actually change the shape after many times of the averaging,
which will introduce “fake” dynamics into the budding process.
(iii) Removing Small Triangles or Edges. In some circum-

stances, we need to remove some small triangles or edges with
areas or lengths much smaller (usually twice) than the averaged
value.
(iv) Fission Process. This operation will be applied to a

vesicle with an extremely small neck. When the neck size is
smaller than some threshold, we try to cut the vesicle into two
parts and let it evolve for some time to see whether the
resulting state becomes more energetically favorable or not. If
more favorable, we accept the fission process and continue the
dynamics; if not, we go back to the before-fission state.
Technically, the fission operation involves two steps: cutting
the closed surface into two open surfaces with open edges and
then closing these open surfaces by adding new vertexes and
faces.
It should be noted that these operations have two sides: on

the one hand, they can improve the numerical stability of the
simulation dramatically and, on the other hand, some
unexpected “fake” dynamics may be introduced into the
simulation. To suppress the latter effect, we have first improved
the surface operations of the Surface Evolver.23 For example,
the old version of “vertex averaging”23 will change the shape of
the surface and introduce fake dynamics, while the operation
(ii) described above preserves the shape. Second, in our
improved method, the computer program will automatically
start these surface operations in between a couple of computer
time steps but not very frequently, while, in the Surface
Evolver,23 the surface operations are started by hand. Third,
since we only care about the equilibrium behavior of the
system, whether the fission process described above really
reflects the real dynamical situation does not concern us too
much; nevertheless, we emphasize that this process can
describe the real fission process properly if the energy barriers
of the fission are available (e.g., obtained from other particle-
based or field-based simulations27).

■ RESULTS
Phase Diagram by the Spherical-Cap Model. In this

article, we especially study the influences of the domain line
tension and the component-dependent spontaneous curvature
on the budding behavior of two-component vesicles. Figure 2
shows the phase diagram of (R0γ/κ, CAR0) obtained by the
spherical-cap model. It mainly involves three types of phase
regions: (i) partially budding phase regions (nt = 0) with all A
domains only partially budding out when γ is small; (ii)
partially bud-off phase regions (np ≠ 0, nt ≠ 0) with some
domains budding off the vesicle for median γ and nonzero CA;
and (iii) totally bud-off phase regions (np = 0) for big γ. The
first two types of phase regions (i) and (ii) have been
previously studied in refs 15−18, while the totally bud-off phase
regions (iii) are new and have not been treated seriously before.
Figure 2 actually presents the totally bud-off conditions for a
two-component vesicle: when the A/B components have no
preferred curvature difference, the critical line tension for the
totally bud-off condition is R0γ/κ > 4.56 (not shown);
increasing this difference will lower this critical value a lot to
about 0.73. However, you will be shown in the simulation
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section that kinetics will complicate these conditions further.
The above bud-off conditions may be important for those
biological processes involving bud-off vesicles such as the
communications between the cell membranes and interior
organelles.20,22

Two more noticeable features about the diagram’s structures
are that all (ii)-type phase regions together form a honeycomb
structure, while the phase regions with the same total buds (np
+ nt), as a whole, look like a crab’s foot with its tip pointing at
the origin of the diagram.
The spherical-cap model is simple, yet the physics contained

in the phase diagram is rich and inspiring. From Figure 2, the
line tension of domain boundaries is found to be the main
driving force for budding. In particular, it determines the
budding types of a two-component vesicle. This effect of the
line tension has long been recognized and studied extensively
both in theory14,15 and experiment.3

However, the effects of the component-dependent elastic
constants on the budding behavior receive less attention and,
thus, still remain somehow elusive. In particular, how the
budding number and budding type depend on these constants
is still unclear for vesicles with no symmetries imposed. The
phase diagram actually quantitatively shows this dependence. In
particular, for big line tensions, we have

ϕ+ + = ̅n n C R1t t A A 0 (6)

which actually defines the phase boundaries of (iii)-type phase
regions and can be obtained by minimizing eq 1 for np = 0.
Overall, the spontaneous curvature difference between the A/B
components will increase the number of buds. The reason for
this is that, when CA = 0, to lower the overall curvature of the
budding domain, the “1 + 0” or “0 + 1” configuration with a
bigger-size bud is obviously a better choice; when CA > 0, A
membrane patches need to match the preferred curvature, the
vesicle configuration with more buds may be more favorable. A
similar conclusion has also been obtained in ref 15, but their
work is mainly restricted to the partially budding phase regions
(i.e., nt = 0). It is also important to note that (i) when the

Gaussian modulus is present, the stability of a many-bud state
compared to that of bud-off vesicles is mainly controlled by the
Gaussian curvature;8 (ii) many-bud budding behavior can also
be observed in single-component vesicles,21 but the driving
forces for budding there are the area difference between the
leaflets of bilayer and the fixed area−volume ratio constraint
other than the domain line tension.

Phase Diagram by Dissipative Dynamics Simulations.
The above spherical-cap model is obviously oversimplified. If it
had not been tested by other methods or simulations, it would
be suspected. Therefore, we have performed some numerical
simulations based on a triangulation-mesh method similar to
Taniguchi’s work7 to test the above analysis.
Figure 3 presents a typical time evolution picture of the

budding dynamics of a two-component vesicle: an initially

spherical vesicle gradually transforms into a “3 + 3”-type vesicle
with three partially budding buds and three bud-off buds. It is
exciting to find that we have successfully simulated the fission
process using the triangulation-mesh method. It should be
noted that we evolve the dynamics for a sufficiently long time,
so the final states obtained here should, at least, correspond to
the metastable states (see also the upper panel of Figure 3).
However, the free energy landscape of the current system might
have many local minima or metastable states for each parameter
setting. Therefore, the above obtained “3 + 3” state might not
be a global minimum. Actually, according to Figure 4, it is not
ground stable (the ground stable state should be a “3 + 2”-type
vesicle other than “3 + 3”).
Nevertheless, the ground stable state can be determined by

comparing the free energies of different metastable states
evolved from different initial states. For example, Figure 4
employs 11 different initial states to determine the ground
states at different reduced line tensions for R0CA = 7.5. For
instance, it is clear that the configurations “0 + 4” will be

Figure 2. Phase diagram of (γ, CA) obtained by the spherical-cap
model at ϕ̅A = 0.35. The “np + nt” notations (e.g., “2 + 1”) are used to
denote the final vesicle configuration, with np and nt being the number
of the partially budding and bud-off buds, respectively (see also Figure
1).

Figure 3. (upper panel) The energy profile of the dynamical evolution
of a random-phase initial state into a “3 + 3” state with three bud-off
buds at ϕ̅A = 0.35, R0CA = 7.5, κ = 6.67, and b = a2 = a4 = 1. The
effective reduced line tension is given by γR0/κ ≈ 2(2ba2)

1/2R0/3κ.
The bulk-phase energy Fbulk = 4πR0

2(−a2ϕ2/2 + a4ϕ
4/4)|ϕ=±1 has been

excluded from the total membrane energy, since this energy only acts
as a surface tension term which remains constant as the total area is
conserved. (lower panel) The corresponding evolutionary snapshots at
different computer time steps. The A-domains are shown in red while
the B-domains in blue.
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ground stable when γR0/κ > 2.25 according to the energy
profiles in Figure 4. For different R0CA, different sets of initial
states are required to determine the ground stable state for each
parameter setting (e.g., only five initials are needed for R0CA =

4.0). By these ground stable states, the corresponding phase
diagram of reduced spontaneous curvature R0CA and line
tension γR0/κ can be constructed.
Figure 5 shows such a phase diagram and the typical vesicle

configurations for every phase region, which involves about
4000 × 24 h of computation on clusters. It should be first noted
that the reduced line tension can be roughly expressed as γR0/κ
≈ 2(2ba2)

1/2R0/3κ, which is actually tuned by varying the
bending modulus κ for fixed b, a2, and a4. Just like the diagram
by the spherical-cap model (SCM), there are three types of
phase regions: (i) partially budding, (ii) partially bud-off, and
(iii) totally bud-off phase regions. Every (i) and (iii) phase
region in Figure 2 show up again in Figure 5; however, only
some of the (ii)-type phase regions reappear in the current
diagram. One possible reason may be that we only explore
some discrete phase points in the phase space and the finer
structures of the diagram require more calculations. In addition,
the critical line tension for bud-off condition by the spherical-
cap model is obviously much smaller than that of simulations. It
might be because the spherical-cap model underestimates the
energy barrier between the partially budding and bud-off states.
Nevertheless, the present simulations qualitatively agree with
the results of SCM. Furthermore, many of the vesicle
configurations shown in Figure 5 can also be found in the
experiments or other simulations. For example, configurations
labeled with “1 + 0” with vanishing spontaneous curvature, “0 +
1”, and “6 + 0” can be found in Baumgart et al.’s experiment,3

while “2 + 0” and “3 + 0” have also been obtained by previous
simulations by Gutlederer et al.16 and Hu et al.18 We have also
reproduced some vesicle configurations observed in Zheng et
al.’s work.17 However, it should be noted that, in the
experiment, the situation is much more complicated because

Figure 4. The energy profiles for 11 different initial states at ϕ̅A = 0.35,
R0CA = 7.5, and b = a2 = a4 = 1, where “1 + 2(SN)” indicates a two-
component vesicle with one partially budding domain and two almost-
bud-off domains but with a very small neck connecting to the mother
vesicle. “Random” indicates the initial state is a spherical vesicle with
the random phase. The final states of different initial states also depend
on the reduced line tension; we label the ground stable configurations
near the data points for each line tension. For the definition of (F −
Fbulk)/κ, please refer to the caption of Figure 3.

Figure 5. Phase diagram of (γR0/κ, R0CA) obtained by the dynamical simulations at ϕ̅A = 0.35 and CB = 0. Note that the reduced line tension can be
roughly expressed as γR0/κ ≈ 2(2ba2)

1/2R0/3κ, which is actually tuned by varying the bending modulus κ for fixed b, a2, and a4. Because κ cannot be
very big in simulations, unlike Figure 2, we cannot study the very small line tension region here. Various symbols like squares and solid triangles are
used to indicate the calculated phase points. Except for the phase boundaries between “1 + 0” and “0 + 1” and “1 + 0” and “2 + 0”, other phase
boundaries are only drawn to guide the eye. The representative vesicle configurations for each phase region are also presented, which are calculated
for the phase points labeled with gray circles.
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the existence of the nonzero spontaneous curvature is not
obvious and the membrane is actually composed of three
components in this experiment.3 Similarly, it is also difficult to
make a quantitative comparison of our results to other
simulation results mostly because the model parameters in
different simulation models are usually defined in different
ways; for example, Zheng et al.17 model the membrane using a
coarse grain model, while we employ the elastic continuum
model based on the Helfrich28 free energy, and it is difficult to
make a quantitative (direct) comparison of the model
parameters between these two models.
In experiments, the kinetics may further complicate the

situation. For example, when CAR0 = 8 and γR0/κ = 2.0, a
totally bud-off state “0 + 5” is the ground stable state (Figure
5); however, we found that a “4 + 3” configuration is obtained
in a dynamical simulation started from a random-initial phase
state, which should be most close to a real experimental
situation, since most experiments start from random initial
states. Therefore, the kinetics will further increase the number
of domains or buds by trapping the vesicles in various
metastable states. Accordingly, we find that it is indeed very
hard to obtain the totally bud-off configurations with random
initial states; most times, we end up with partially bud-off ones.
In contrast, the totally bud-off regions dominate a large area of
the phase space in Figure 5.

■ DISCUSSION
Budding behaviors of two-component vesicles have been
studied by a simple spherical-cap model together with a series
of dissipative dynamical simulations. By computing the phase
diagrams at different spontaneous curvatures and domain line
tensions, we have identified three major phase regions, i.e.,
partially budding, partially bud-off, and totally bud-off phase
regions, respectively. In particular, partially budding phase
regions have been extensively studied by Gutlederer et al.16 and
Hu et al.,18 and partially bud-off phase regions with different
topologies have been particularly investigated by Zheng et al.,17

while the totally bud-off phase regions are new and have not
been treated seriously before. Both the spherical-cap model and
simulations show that the less dominant component can
completely bud off the mother vesicle above some critical
domain line tension (see Figures 2 and 5); increasing the
spontaneous curvature can lower this critical value but will
increase the number of bud-off buds at the same time (see eq
6). The above bud-off conditions may be important for those
biological processes involving bud-off vesicles such as the
communications between the cell membranes and interior
organelles;20,22 our calculations imply that, if a cell or vesicle
wants to dump the unwanted lipid component, the
spontaneous curvature of the unwanted component is
important, which determines whether this component can be
dumped completely as well as the size (also the number) of the
dumping buds.
In our spherical-cap model, we assume that all the budding

(bud-off) domains are with spherical-cap (spherical) shapes.
This simple model setting enables us to calculate the global
minimum-energy states easily and accurately. In fact, we can
enumerate nearly all possible budding vesicle states at each
parameter setting and compare the corresponding energies of
these states to obtain the global minimum or ground stable
states. Therefore, the phase diagram constructed from these
states is accurate in this sense. In particular, this model gives the
explicit expression (eq 6) for the phase boundaries between the

totally bud-off phase regions in the phase diagram. Never-
theless, this model is oversimplified and not realistic, as the
budding shapes observed in experiments are not ideally
spherical; further, the model cannot consider the critical-
composition case (ϕ̅A = ϕ̅B = 0.5), under which condition two
components usually form bicontinuous phase domains and a
spherical-cap assumption will not be valid anymore.
However, if the phase diagram can be verified by simulations,

then it can still provide instructive and qualitative descriptions
for the budding behavior of multicomponent vesicles. There-
fore, we have also computed a phase diagram by a series of
dissipative dynamical simulations showing qualitatively good
agreements with that by the spherical-cap model. Our
dissipative dynamical simulations are based on an elastic
continuum model7 (described by the Helfrich-type free
energy28) for multicomponent vesicles, which employs a
dynamical triangulation-mesh method together with diffusive
dynamics for the phase separations of the two components.
Previous simulations16−18 for budding behavior of multi-
component vesicles are mostly based on the coarse-grained
model which has been regarded as a better model than the
elastic continuum model, mostly because previous simulations7

based on the continuum model cannot describe the fission
process. Our simulations have shown that the continuum
model can also describe the fission process even though it
cannot account for the molecular rearrangements12 during the
fission process. In addition, the simulations based on the
continuum model have their own advantages. Because most
previous theories22 about vesicle deformations are based on
continuum models, the simulations based on these models can
be directly made compared with previous theories (though this
work has not made such comparisons).
In addition to the above discussions, several comments can

be made from the present work: (1) Most model assumptions
of the current study (in both spherical-cap model and
dissipative simulations) are the same as previous simula-
tions7,9,17,18 related to multicomponent vesicles. In particular,
these calculations are all based on the spontaneous-curvature
model. However, the physical origin of the spontaneous
curvatures of different components is not very clear,17 which
might be due to the local compositional asymmetry between
two leaflets of the bilayer. (2) In the present study, we only
investigated the influences of the component-dependent
spontaneous curvature on the budding behavior of multi-
component vesicles. However, many experiments show that the
bending modulus is also a severely component-dependent
parameter, and Gutlederer et al.16 and Hu et al.18 have carefully
studied the influence of this dependence for the partially
budding phase regions. It will be interesting to study how the
component-dependent bending modulus affects the bud-off
behavior of multicomponent vesicles in our future works. (3) In
most previous works,7,9,16−18 they have also considered the
influence of different component compositions (i.e., ϕ̅A), which
is not accessible for the spherical-cap model due to the
spherical-cap assumption; when ϕ̅A = 0.5, the multicomponent
vesicle may form “belt-like” A-domains. Nevertheless, just as
other simulation methods, our simulation method can easily
account for any component composition. (4) Our previous
work29 shows that microphase separations of A/B diblock
copolymers can naturally form multiple domains on a rigid,
closed spherical surface, where the chemical bonds linking the
A/B blocks prevent A/B components from further separating
into macro-phase domains. Similarly, current work indicates
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that the presumable macro-phase separations on a deformable
vesicle can also be inhibited under certain circumstances by the
spontaneous-curvature bending energy, resulting in many-bud
phases. This phenomenon has also been noticed by many other
authors.1,16−18 (5) Although in the current study, the
simulations based on dynamical triangulations are employed
only to test the results by the spherical-cap model, we
emphasize that the results by these simulations themselves do
reveal some important physics that have been neglected by the
spherical-cap model. For instance, simulations show that the
multicomponent vesicles might be easily trapped in the
metastable states with more buds than in its stable state,
while the spherical-cap model alone cannot address the
mechanism behind these metastabilities properly. Furthermore,
the simulation techniques developed in this work can be easily
extended to other systems involving multicomponent vesicles,
where the spherical-cap assumption might be no longer
applicable (see also comment (3)). For example, when the
area−volume ratio is big, the multicomponent vesicles form
tubular shapes,4 which are certainly not suitable to be depicted
as spherical caps.

■ CONCLUSIONS
In summary, we study the budding behavior of a two-
component vesicle by the spherical-cap model (SCM) together
with computer simulations. We find that the component-
dependent elastic properties will determine the number of buds
and affect the budding types as well. In particular, the
spontaneous curvature difference between the two components
will increase the budding number. The phase diagrams by the
SCM and the simulations are also obtained, both showing three
different types of phase regions, i.e., partially budding, partially
bud-off, and totally bud-off phase regions.
The current study only considered the component-depend-

ent spontaneous curvature, and other component-dependent
properties will be included in our future studies. To our best
knowledge, we have first reported a simulation method based
on the triangulated mesh and diffusive dynamics, that can
properly describe large deformations and the fission process for
multicomponent vesicles. In addition, we believe we have
provided a general theoretical framework for the study of
multicomponent vesicles.
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